

Auteur : Aziz MOHAMED BEN ALI

The Software craftsmanship

Table des matières
The Software craftsmanship .. 1

Introduction ... 2

Un produit mal conçu ... 2

Développeur, un rôle essentiel mais souvent mal compris ... 2

Le manifeste du Software Craftsmanship ... 3

Les pratiques .. 4

Rendons au développeur ses titres de noblesse ... 5

Conclusion .. 6

Sources : ... 6

Auteur : Aziz MOHAMED BEN ALI

Introduction

De manière générale, les entreprises font un focus sur la réduction des coûts dans le cadre

de la réalisation d'un produit répondant à leurs besoins. Elles veulent un produit qui soit

disponible le plus rapidement possible avec des coûts réduits. Cela peut paraître un choix

judicieux pour une entreprise dans le cadre de l'optimisation des budgets, mais cela n'est pas

une bonne solution pour un projet lorsque cette rapidité est obtenue en sacrifiant les bonnes

pratiques et la maturité technique, car deux problèmes apparaissent.

Un produit mal conçu

A force de vouloir faire les choses rapidement pour sortir un produit le plus tôt possible dans

le but de réduire les coûts de développement et de rentabiliser le produit le plus rapidement

possible on va se retrouver avec un produit mal conçu. En effet, la stratégie du « vite fait et

peu coûteux » n'est pas une stratégie gagnante sur le long terme. Les conséquences de ce

choix sont lourdes. En effet, avec le temps les technologies évoluent et faire suivre ces

évolutions technologiques sur un produit mal conçu sera de plus en plus difficile à cause

d'une mauvaise architecture logicielle. La maintenance sera elle aussi de plus en plus

complexe à cause d'un manque d'organisation et de cohérence dans le code. Les correctifs

sur les nombreux bugs constatés en production seront aussi de plus en plus difficiles à

apporter à cause d'un manque de clarté du code.

Toutes ces difficultés vont, sur le long terme entraîner une explosion des coûts et seront

préjudiciables à l'entreprise dans le sens où la maintenabilité sera très complexe et longue à

tel point que le projet peut être abandonné pour être entièrement redéveloppé (from

scratch).

Développeur, un rôle essentiel mais souvent mal compris

Quand une entreprise veut faire les choses rapidement pour mettre son produit en

production ou bien parce qu'il faut respecter des délais serrés (voire très serrés), il y a des

sacrifices à faire et le rôle du développeur en pâtit. Le développeur est vu comme un simple

exécutant. Il est présent pour écrire du code. Le client a un besoin que le développeur traduit

en langage informatique. Son rôle est réduit au strict minimum et fait du développeur un

élément de second rôle avec peu de responsabilité alors que c'est un élément de premier

plan.

Auteur : Aziz MOHAMED BEN ALI

C'est à partir de ces deux problématiques récurrentes du monde de l'industrie logicielle que

le software craftsmanship qui a émergé dans les années 2000 (avec un manifeste en 2009)

apporte des réponses. Le software craftsmanship (artisanat du logiciel), est un concept, une

philosophie qui accorde une importance primordiale à la conception d'un produit et au rôle

du développeur. En effet, cette philosophie apporte des principes, des valeurs, un état

d'esprit permettant de faire d'un produit un produit bien conçu et de faire du développeur

un élément de premier plan.

Le manifeste du Software Craftsmanship

Voici ce que contient le manifeste craft (https://manifesto.softwarecraftsmanship.org/) :

• Pas seulement des logiciels opérationnels, mais aussi des logiciels bien conçus.

• Pas seulement l'adaptation aux changements, mais aussi l'ajout constant de la

valeur.

• Pas seulement les individus et leurs interactions, mais aussi une communauté de

professionnels.

• Pas seulement la collaboration avec les clients, mais aussi des partenariats

productifs.

Le manifeste craft est complémentaire au manifeste agile (ils sont étroitement liés) dans le

sens où ce dernier se concentre sur l'organisation de l'équipe et la collaboration avec le

client, alors que le manifeste craft met l'accent sur la qualité technique et le

professionnalisme/responsabilité du développeur.

Afin d'illustrer les 4 principes de ce manifeste nous allons ci-dessous voir quelques pratiques

permettant de mettre l'accent sur la qualité technique et le professionnalisme du

développeur afin de résoudre les problématiques mentionnées au début de cet article mais

aussi ce qu'est un développeur dans le monde du craft.

https://manifesto.softwarecraftsmanship.org/

Auteur : Aziz MOHAMED BEN ALI

Les pratiques

• Mob programming :

Le Mob Programming est une pratique presque similaire au Pair Programming, mais

impliquant l’ensemble de l’équipe (au moins trois personnes). Tous travaillent

ensemble sur une même user story, devant un seul poste. Une personne est au

clavier et rédige le code, tandis que les autres guident et proposent les solutions.

Toutes les 10 minutes (maximum 15 minutes), les rôles changent, permettant à

chacun de coder à tour de rôle.

Cette rotation favorise la montée en compétence de l'équipe : chaque membre

apprend des autres, qu’il s’agisse des outils, des techniques ou de la connaissance

métier. L’objectif est de renforcer la qualité du produit tout en développant la

cohésion et l’expertise de l’équipe ainsi que sa maturité.

• Le Test-Driven-Development :

Le TDD est une méthodologie itérative qui permet d'améliorer la qualité de code via

la conception, l'implémentation et la réduction d'anomalies via un développement

guidé par les tests. En effet, cette méthodologie permet d'avancer étape par étape

(red, green, refactoring) via les tests afin de ne faire que le strict nécessaire dans le

cadre de l'implémentation d'une spécification. Elle a l'avantage de mettre en place

une discipline et un cadre afin d'avoir un code propre, simple (pas de superflu), mais

aussi d'avoir une documentation dynamique des spécifications (étant donné que les

tests permettent de tester des spécifications, on peut dans ce cas considérer que les

tests sont une documentation dynamique). Le TDD permet également d'avoir un

meilleur taux de couverture mais ce n'est que la conséquence de son application.

• Le clean code :

Le clean code désigne un code clair, simple et facile à comprendre pour n’importe

quel développeur. Il évite les mauvaises pratiques comme les noms ambigus, les

méthodes trop longues, complexes, les duplications inutiles qui alourdissent la

compréhension. Un code propre reste minimaliste : moins il y a d’éléments superflus,

moins il y a de risques de bugs et plus la maintenance est simple. Enfin, un code

propre est entièrement testé et fiable, ce qui garantit sa stabilité dans le temps. En

somme, un code propre est un code lisible, simple, non dupliqué et bien testé, conçu

pour durer. Pour une amélioration constante de la qualité de code nous pouvons

Auteur : Aziz MOHAMED BEN ALI

passer par ce qu'on appelle le refactoring qui est une méthode de développement qui

consiste à modifier le code sans changer le comportement afin d'éliminer ce qui

pourrait poser problèmes plus tard.

• Veille technologique :

La veille technologique fait partie intégrante du rôle d’un développeur artisan. Se

tenir informé des nouveaux concepts, des design patterns, des architectures ou des

bonnes pratiques permet d’améliorer la qualité du code et d’enrichir sa vision

technique. Cette démarche d’apprentissage continu renforce la capacité du

développeur à proposer des solutions pertinentes et à anticiper les besoins futurs.

C’est un investissement personnel qui bénéficie directement au produit et à l’équipe.

J'ai cité quelques exemples de bonnes pratiques respectant la philosophie du software

craftsmanship mais il en existe bien d'autres tels que le BDD, les feedbacks, les mutation

testing, etc .

Je vous invite à faire vos propres recherches pour approfondir vos connaissances là-dessus.

Rendons au développeur ses titres de noblesse

Le software craftsmanship accorde une importance capitale au rôle du développeur et le met

au premier plan dans le processus de la réalisation d'un produit. Il n'est donc plus vu comme

un simple exécutant chargé d'écrire du simple code mais comme un professionnel

responsable, soucieux de la qualité du produit et de son fonctionnement sur le long terme.

Pour cela, le software craftsmanship met l'accent sur plusieurs points mais je n'en citerai que

trois qui sont pour moi les plus importantes :

• Responsabilité :

Dans la philosophie du software craftsmanship, le développeur prend entièrement la

responsabilité de ce qu’il produit. Cela signifie que pour lui, implémenter une

fonctionnalité n'est pas suffisant. Il s’engage à livrer un code propre, simple,

facilement maintenable et qui dure dans le temps. Etre responsable d'un point de vue

craft c'est aussi prendre des décisions techniques réfléchies, de refuser les

compromis qui peuvent dégrader la qualité du produit et d’alerter quand il le faut. Le

développeur devient garant de la qualité du produit, pas seulement de son

fonctionnement.

Auteur : Aziz MOHAMED BEN ALI

• Expérience :

L’expérience est la force du développeur. Quand on parle d'expériences on pense aux

années travaillées mais c'est aussi le fait d'apprendre de manière continue, d'avoir

une curiosité qu'il faut nourrir constamment, de comprendre les enjeux techniques,

d’anticiper les problèmes et de proposer des solutions adaptées. Le software

craftsmanship met l'accent sur la montée en compétence permanente : pratiquer,

expérimenter, se remettre en question, découvrir de nouvelles approches, améliorer

ses méthodes. Plus l’expérience grandit, plus le développeur devient capable de

concevoir des architectures solides et d'améliorer son code avec un code de meilleure

qualité et de partager ses acquis avec les autres membres de l’équipe.

• Partage/Transmission de connaissances :

Un développeur ne garde pas ses connaissances pour lui. Le partage est une partie de

la culture du software craftsmanship. Il existe plusieurs façons de transmettre son

savoir. Cela peut passer par le pair programming, le mob programming, les revues de

code, les feedbacks, les ateliers etc. Transmettre ses connaissances permet de faire

monter en compétence l’équipe, de réduire les dépendances à une seule personne et

de créer une dynamique autour du partage. C'est aussi un moyen de renforcer la

cohésion et de faire progresser l’ensemble de l'équipe et ne sera que bénéfique pour

le projet.

Conclusion

Le software craftsmanship est une philosophie qui met l'accent sur la qualité technique dans

l'objectif d'avoir un produit de qualité, fiable et qui dure dans le temps. Il se concentre

également sur l'humain en valorisant son expertise, son professionnalisme et le travail

collectif. La philosophie craft s'inscrit dans la continuité de l'agilité afin de compléter cette

dernière sur les aspects techniques et humains dans le cadre du développement d'un

produit.

Sources :

https://artisandeveloppeur.fr/software-craftsmanship/

https://refactoring.guru/

https://manifesto.softwarecraftsmanship.org/

livre Software craft : TDD, Clean Code et autres pratiques essentielles

https://artisandeveloppeur.fr/software-craftsmanship/
https://refactoring.guru/
https://manifesto.softwarecraftsmanship.org/

