The Software craftsmanship

Table des matieres

The Software craftSmManShIPcovoiie et 1
INEFOTUCTION <.ttt et e et e e st e e s s bt e e s sabeeeesabbeessabbeesaabaeeesabaeessnreens 2
(e Yo [0y o o= | I oo s ol U USRS 2
Développeur, un réle essentiel mais souvent Mal COMPIiS.......cccviiiieeiiciiiiie e e 2
Le manifeste du Software CraftsSmanshipocccuiiiiiiicicic e e 3
[T o] =L T LU= PP 4
Rendons au développeur ses titres de NOBIESSE......cuvvviiiiiei e 5
(60e] 3ol (D11 To o FA TPV T ST PR PRSP 6
SOUFCES I .iiieiiiiitee ittt ettt e e sttt e e st a et e e st e et e et a et e e st a et e e e s s ra e e e e s sane 6

Auteur : Aziz MOHAMED BEN ALI

Introduction

De maniere générale, les entreprises font un focus sur la réduction des colts dans le cadre
de la réalisation d'un produit répondant a leurs besoins. Elles veulent un produit qui soit
disponible le plus rapidement possible avec des colts réduits. Cela peut paraitre un choix
judicieux pour une entreprise dans le cadre de I'optimisation des budgets, mais cela n'est pas
une bonne solution pour un projet lorsque cette rapidité est obtenue en sacrifiant les bonnes
pratiques et la maturité technique, car deux problémes apparaissent.

Un produit mal concu

A force de vouloir faire les choses rapidement pour sortir un produit le plus tot possible dans
le but de réduire les colts de développement et de rentabiliser le produit le plus rapidement
possible on va se retrouver avec un produit mal congu. En effet, la stratégie du « vite fait et
peu colteux » n'est pas une stratégie gagnante sur le long terme. Les conséquences de ce
choix sont lourdes. En effet, avec le temps les technologies évoluent et faire suivre ces
évolutions technologiques sur un produit mal concu sera de plus en plus difficile a cause
d'une mauvaise architecture logicielle. La maintenance sera elle aussi de plus en plus
complexe a cause d'un manque d'organisation et de cohérence dans le code. Les correctifs
sur les nombreux bugs constatés en production seront aussi de plus en plus difficiles a
apporter a cause d'un manque de clarté du code.

Toutes ces difficultés vont, sur le long terme entrainer une explosion des co(ts et seront
préjudiciables a I'entreprise dans le sens ol la maintenabilité sera trés complexe et longue a
tel point que le projet peut étre abandonné pour étre entierement redéveloppé (from
scratch).

Développeur, un role essentiel mais souvent mal compris

Quand une entreprise veut faire les choses rapidement pour mettre son produit en
production ou bien parce qu'il faut respecter des délais serrés (voire trés serrés), il y a des
sacrifices a faire et le réle du développeur en patit. Le développeur est vu comme un simple
exécutant. Il est présent pour écrire du code. Le client a un besoin que le développeur traduit
en langage informatique. Son rdle est réduit au strict minimum et fait du développeur un
élément de second réle avec peu de responsabilité alors que c'est un élément de premier
plan.

Auteur : Aziz MOHAMED BEN ALI

C'est a partir de ces deux problématiques récurrentes du monde de l'industrie logicielle que
le software craftsmanship qui a émergé dans les années 2000 (avec un manifeste en 2009)
apporte des réponses. Le software craftsmanship (artisanat du logiciel), est un concept, une
philosophie qui accorde une importance primordiale a la conception d'un produit et au role
du développeur. En effet, cette philosophie apporte des principes, des valeurs, un état
d'esprit permettant de faire d'un produit un produit bien congu et de faire du développeur
un élément de premier plan.

Le manifeste du Software Craftsmanship

Voici ce que contient le manifeste craft (https://manifesto.softwarecraftsmanship.org/) :

e Passeulement des logiciels opérationnels, mais aussi des logiciels bien congus.

e Pas seulement 'adaptation aux changements, mais aussi I'ajout constant de la
valeur.

e Pas seulement les individus et leurs interactions, mais aussi une communauté de
professionnels.

e Pas seulement la collaboration avec les clients, mais aussi des partenariats
productifs.

Le manifeste craft est complémentaire au manifeste agile (ils sont étroitement liés) dans le
sens ou ce dernier se concentre sur |'organisation de I'équipe et la collaboration avec le
client, alors que le manifeste craft met I'accent sur la qualité technique et le
professionnalisme/responsabilité du développeur.

Afin d'illustrer les 4 principes de ce manifeste nous allons ci-dessous voir quelques pratiques
permettant de mettre |'accent sur la qualité technique et le professionnalisme du
développeur afin de résoudre les problématiques mentionnées au début de cet article mais
aussi ce qu'est un développeur dans le monde du craft.

Auteur : Aziz MOHAMED BEN ALI

https://manifesto.softwarecraftsmanship.org/

)
\\m ax/:

~—

Les pratiques

Mob programming :

Le Mob Programming est une pratique presque similaire au Pair Programming, mais
impliquant 'ensemble de I'équipe (au moins trois personnes). Tous travaillent
ensemble sur une méme user story, devant un seul poste. Une personne est au
clavier et rédige le code, tandis que les autres guident et proposent les solutions.
Toutes les 10 minutes (maximum 15 minutes), les réles changent, permettant a
chacun de coder a tour de role.

Cette rotation favorise la montée en compétence de I'équipe : chaque membre
apprend des autres, qu’il s'agisse des outils, des techniques ou de la connaissance
métier. Lobjectif est de renforcer la qualité du produit tout en développant la
cohésion et I'expertise de I'équipe ainsi que sa maturité.

Le Test-Driven-Development :

Le TDD est une méthodologie itérative qui permet d'améliorer la qualité de code via
la conception, I'implémentation et la réduction d'anomalies via un développement
guidé par les tests. En effet, cette méthodologie permet d'avancer étape par étape
(red, green, refactoring) via les tests afin de ne faire que le strict nécessaire dans le
cadre de I'implémentation d'une spécification. Elle a I'avantage de mettre en place
une discipline et un cadre afin d'avoir un code propre, simple (pas de superflu), mais
aussi d'avoir une documentation dynamique des spécifications (étant donné que les
tests permettent de tester des spécifications, on peut dans ce cas considérer que les
tests sont une documentation dynamique). Le TDD permet également d'avoir un
meilleur taux de couverture mais ce n'est que la conséquence de son application.

Le clean code :

Le clean code désigne un code clair, simple et facile a comprendre pour n’'importe
quel développeur. Il évite les mauvaises pratigues comme les noms ambigus, les
méthodes trop longues, complexes, les duplications inutiles qui alourdissent la
compréhension. Un code propre reste minimaliste : moins il y a d’éléments superflus,
moins il y a de risques de bugs et plus la maintenance est simple. Enfin, un code
propre est entierement testé et fiable, ce qui garantit sa stabilité dans le temps. En
somme, un code propre est un code lisible, simple, non dupliqué et bien testé, congu
pour durer. Pour une amélioration constante de la qualité de code nous pouvons

Auteur : Aziz MOHAMED BEN ALI

passer par ce qu'on appelle le refactoring qui est une méthode de développement qui
consiste a modifier le code sans changer le comportement afin d'éliminer ce qui
pourrait poser problemes plus tard.

e Veille technologique :

La veille technologique fait partie intégrante du réle d’un développeur artisan. Se
tenir informé des nouveaux concepts, des design patterns, des architectures ou des
bonnes pratiques permet d'améliorer la qualité du code et d’enrichir sa vision
technique. Cette démarche d’apprentissage continu renforce la capacité du
développeur a proposer des solutions pertinentes et a anticiper les besoins futurs.
C’est un investissement personnel qui bénéficie directement au produit et a I'équipe.

J'ai cité quelques exemples de bonnes pratiques respectant la philosophie du software
craftsmanship mais il en existe bien d'autres tels que le BDD, les feedbacks, les mutation
testing, etc.

Je vous invite a faire vos propres recherches pour approfondir vos connaissances la-dessus.

Rendons au développeur ses titres de noblesse

Le software craftsmanship accorde une importance capitale au réle du développeur et le met
au premier plan dans le processus de la réalisation d'un produit. Il n'est donc plus vu comme
un simple exécutant chargé d'écrire du simple code mais comme un professionnel
responsable, soucieux de la qualité du produit et de son fonctionnement sur le long terme.
Pour cela, le software craftsmanship met I'accent sur plusieurs points mais je n'en citerai que
trois qui sont pour moi les plus importantes :

e Responsabilité :

Dans la philosophie du software craftsmanship, le développeur prend entierement la
responsabilité de ce qu’il produit. Cela signifie que pour lui, implémenter une
fonctionnalité n'est pas suffisant. Il s’engage a livrer un code propre, simple,
facilement maintenable et qui dure dans le temps. Etre responsable d'un point de vue
craft c'est aussi prendre des décisions techniques réfléchies, de refuser les
compromis qui peuvent dégrader la qualité du produit et d’alerter quand il le faut. Le
développeur devient garant de la qualité du produit, pas seulement de son
fonctionnement.

Auteur : Aziz MOHAMED BEN ALI

e Expérience :

Lexpérience est la force du développeur. Quand on parle d'expériences on pense aux
années travaillées mais c'est aussi le fait d'apprendre de maniére continue, d'avoir
une curiosité qu'il faut nourrir constamment, de comprendre les enjeux techniques,
d’anticiper les problémes et de proposer des solutions adaptées. Le software
craftsmanship met I'accent sur la montée en compétence permanente : pratiquer,
expérimenter, se remettre en question, découvrir de nouvelles approches, améliorer
ses méthodes. Plus I'expérience grandit, plus le développeur devient capable de
concevoir des architectures solides et d'améliorer son code avec un code de meilleure
qualité et de partager ses acquis avec les autres membres de I'équipe.

e Partage/Transmission de connaissances :

Un développeur ne garde pas ses connaissances pour lui. Le partage est une partie de
la culture du software craftsmanship. Il existe plusieurs facons de transmettre son
savoir. Cela peut passer par le pair programming, le mob programming, les revues de
code, les feedbacks, les ateliers etc. Transmettre ses connaissances permet de faire
monter en compétence I'équipe, de réduire les dépendances a une seule personne et
de créer une dynamique autour du partage. C'est aussi un moyen de renforcer la
cohésion et de faire progresser 'ensemble de I'équipe et ne sera que bénéfique pour
le projet.

Conclusion

Le software craftsmanship est une philosophie qui met I'accent sur la qualité technique dans
I'objectif d'avoir un produit de qualité, fiable et qui dure dans le temps. Il se concentre
également sur I'humain en valorisant son expertise, son professionnalisme et le travail
collectif. La philosophie craft s'inscrit dans la continuité de I'agilité afin de compléter cette
derniere sur les aspects techniques et humains dans le cadre du développement d'un
produit.

Sources :

https://artisandeveloppeur.fr/software-craftsmanship/
https://refactoring.guru/
https://manifesto.softwarecraftsmanship.org/

livre Software craft : TDD, Clean Code et autres pratiques essentielles

Auteur : Aziz MOHAMED BEN ALI

https://artisandeveloppeur.fr/software-craftsmanship/
https://refactoring.guru/
https://manifesto.softwarecraftsmanship.org/

